Skip to main content

Workflow Performance Optimization

Comprehensive guide to optimizing workflow performance, monitoring resource usage, and scaling Axon OS workflows for production environments.

Overview

Performance optimization is crucial for ensuring your Axon OS workflows run efficiently and can handle production workloads. This guide covers performance monitoring, optimization techniques, and scaling strategies.

Key Performance Areas

  • Execution Speed: Minimize workflow execution time
  • Resource Utilization: Optimize CPU, memory, and I/O usage
  • Throughput: Maximize data processing capacity
  • Scalability: Handle increasing workloads efficiently
  • Latency: Reduce response times for real-time workflows
  • Reliability: Maintain performance under various conditions

Performance Monitoring

Key Performance Metrics

interface WorkflowPerformanceMetrics {
execution: ExecutionMetrics;
resources: ResourceMetrics;
throughput: ThroughputMetrics;
latency: LatencyMetrics;
errors: ErrorMetrics;
}

interface ExecutionMetrics {
totalExecutionTime: number;
nodeExecutionTimes: Map<string, number>;
queueTime: number;
parallelEfficiency: number;
bottleneckNodes: string[];
}

interface ResourceMetrics {
cpuUsage: CPUMetrics;
memoryUsage: MemoryMetrics;
diskIO: DiskIOMetrics;
networkIO: NetworkIOMetrics;
}

interface CPUMetrics {
averageUsage: number;
peakUsage: number;
coreUtilization: number[];
computeIntensiveNodes: string[];
}

interface MemoryMetrics {
heapUsed: number;
heapTotal: number;
external: number;
peakMemoryUsage: number;
memoryLeaks: MemoryLeak[];
}

interface ThroughputMetrics {
recordsPerSecond: number;
bytesPerSecond: number;
workflowsPerHour: number;
batchProcessingRate: number;
}

interface LatencyMetrics {
p50: number; // 50th percentile
p95: number; // 95th percentile
p99: number; // 99th percentile
averageLatency: number;
nodeLatencies: Map<string, LatencyStats>;
}

Performance Monitoring Implementation

class PerformanceMonitor {
private metrics: Map<string, WorkflowPerformanceMetrics> = new Map();
private collectors: PerformanceCollector[] = [];

startMonitoring(executionId: string): void {
// Initialize metrics collection
this.metrics.set(executionId, this.createEmptyMetrics());

// Start collectors
this.collectors.forEach(collector => collector.start(executionId));
}

recordNodeExecution(
executionId: string,
nodeId: string,
startTime: number,
endTime: number,
resourceUsage: ResourceSnapshot
): void {
const metrics = this.metrics.get(executionId);
if (!metrics) return;

const executionTime = endTime - startTime;

// Update execution metrics
metrics.execution.nodeExecutionTimes.set(nodeId, executionTime);
metrics.execution.totalExecutionTime += executionTime;

// Update resource metrics
this.updateResourceMetrics(metrics.resources, resourceUsage);

// Check for bottlenecks
if (executionTime > 5000) { // 5 seconds threshold
metrics.execution.bottleneckNodes.push(nodeId);
}
}

generatePerformanceReport(executionId: string): PerformanceReport {
const metrics = this.metrics.get(executionId);
if (!metrics) throw new Error(`No metrics found for execution ${executionId}`);

return {
executionId,
summary: this.generateSummary(metrics),
bottlenecks: this.identifyBottlenecks(metrics),
recommendations: this.generateRecommendations(metrics),
trends: this.analyzeTrends(metrics),
comparisons: this.compareWithBaseline(metrics)
};
}

private identifyBottlenecks(metrics: WorkflowPerformanceMetrics): Bottleneck[] {
const bottlenecks: Bottleneck[] = [];

// CPU bottlenecks
if (metrics.resources.cpuUsage.averageUsage > 80) {
bottlenecks.push({
type: 'cpu',
severity: 'high',
description: 'High CPU usage detected',
affectedNodes: metrics.resources.cpuUsage.computeIntensiveNodes,
recommendation: 'Consider parallelization or algorithm optimization'
});
}

// Memory bottlenecks
if (metrics.resources.memoryUsage.heapUsed > metrics.resources.memoryUsage.heapTotal * 0.9) {
bottlenecks.push({
type: 'memory',
severity: 'critical',
description: 'High memory usage approaching limits',
recommendation: 'Optimize data structures or increase memory allocation'
});
}

// Execution time bottlenecks
const slowestNodes = Array.from(metrics.execution.nodeExecutionTimes.entries())
.sort(([,a], [,b]) => b - a)
.slice(0, 3);

slowestNodes.forEach(([nodeId, time]) => {
if (time > 10000) { // 10 seconds
bottlenecks.push({
type: 'execution',
severity: 'medium',
description: `Node ${nodeId} is slow (${time}ms)`,
affectedNodes: [nodeId],
recommendation: 'Review node implementation and consider optimization'
});
}
});

return bottlenecks;
}
}

Optimization Strategies

1. Parallelization

interface ParallelizationConfig {
enabled: boolean;
maxConcurrency: number;
nodeGroups: ParallelNodeGroup[];
dependencies: NodeDependency[];
resourceLimits: ResourceLimits;
}

interface ParallelNodeGroup {
id: string;
nodeIds: string[];
executionMode: 'parallel' | 'batch' | 'pipeline';
batchSize?: number;
priority: number;
}

class ParallelExecutionOptimizer {
analyzeParallelizationOpportunities(workflow: Workflow): ParallelizationRecommendations {
const analysis = this.analyzeWorkflowStructure(workflow);

return {
independentNodeGroups: this.findIndependentNodes(analysis),
dataParallelCandidates: this.findDataParallelNodes(analysis),
pipelineOpportunities: this.findPipelineOpportunities(analysis),
estimatedSpeedup: this.calculateSpeedupPotential(analysis)
};
}

private findIndependentNodes(analysis: WorkflowAnalysis): NodeGroup[] {
const groups: NodeGroup[] = [];
const visited = new Set<string>();

for (const node of analysis.nodes) {
if (visited.has(node.id)) continue;

const independentGroup = this.findConnectedComponent(node, analysis, visited);

if (independentGroup.length > 1) {
groups.push({
id: `group_${groups.length}`,
nodes: independentGroup,
parallelizable: true,
estimatedSpeedup: independentGroup.length * 0.8 // Account for overhead
});
}
}

return groups;
}

optimizeParallelExecution(
workflow: Workflow,
config: ParallelizationConfig
): OptimizedWorkflow {

// Create execution plan with parallel groups
const executionPlan = this.createParallelExecutionPlan(workflow, config);

// Optimize resource allocation
const resourcePlan = this.optimizeResourceAllocation(executionPlan, config.resourceLimits);

// Generate optimized workflow
return this.generateOptimizedWorkflow(workflow, executionPlan, resourcePlan);
}
}

// Example: Parallel execution configuration
const parallelConfig: ParallelizationConfig = {
enabled: true,
maxConcurrency: 4,
nodeGroups: [
{
id: 'data_processing_group',
nodeIds: ['transform_1', 'transform_2', 'validate_1', 'validate_2'],
executionMode: 'parallel',
priority: 1
},
{
id: 'api_calls_group',
nodeIds: ['api_call_1', 'api_call_2', 'api_call_3'],
executionMode: 'batch',
batchSize: 2,
priority: 2
}
],
dependencies: [
{ from: 'input', to: 'data_processing_group' },
{ from: 'data_processing_group', to: 'api_calls_group' },
{ from: 'api_calls_group', to: 'output' }
],
resourceLimits: {
maxCPU: 80,
maxMemory: '2GB',
maxConcurrentNodes: 8
}
};

2. Caching and Memoization

interface CacheConfig {
enabled: boolean;
strategy: CacheStrategy;
ttl: number;
maxSize: number;
keyGenerator: CacheKeyGenerator;
storage: CacheStorage;
}

enum CacheStrategy {
LRU = 'lru',
LFU = 'lfu',
TTL = 'ttl',
SMART = 'smart'
}

class WorkflowCacheManager {
private caches: Map<string, Cache> = new Map();

createNodeCache(nodeId: string, config: CacheConfig): void {
const cache = new SmartCache(config);
this.caches.set(nodeId, cache);
}

async getCachedResult(
nodeId: string,
input: any,
context: ExecutionContext
): Promise<CachedResult | null> {

const cache = this.caches.get(nodeId);
if (!cache) return null;

const cacheKey = this.generateCacheKey(nodeId, input, context);
const cachedResult = await cache.get(cacheKey);

if (cachedResult) {
return {
data: cachedResult.data,
metadata: {
cached: true,
cacheHit: true,
originalExecutionTime: cachedResult.metadata.executionTime,
cacheTimestamp: cachedResult.timestamp
}
};
}

return null;
}

async setCachedResult(
nodeId: string,
input: any,
output: any,
context: ExecutionContext,
executionTime: number
): Promise<void> {

const cache = this.caches.get(nodeId);
if (!cache) return;

const cacheKey = this.generateCacheKey(nodeId, input, context);

await cache.set(cacheKey, {
data: output,
timestamp: Date.now(),
metadata: {
executionTime,
nodeId,
inputHash: this.hashInput(input)
}
});
}

private generateCacheKey(
nodeId: string,
input: any,
context: ExecutionContext
): string {
const inputHash = this.hashInput(input);
const contextHash = this.hashContext(context);
return `${nodeId}:${inputHash}:${contextHash}`;
}

private hashInput(input: any): string {
return crypto.createHash('sha256')
.update(JSON.stringify(input, this.replacer))
.digest('hex');
}

getCacheStatistics(): CacheStatistics {
const stats: CacheStatistics = {
totalNodes: this.caches.size,
hitRate: 0,
missRate: 0,
memoryUsage: 0,
entriesCount: 0
};

let totalHits = 0;
let totalRequests = 0;

for (const [nodeId, cache] of this.caches) {
const nodeStats = cache.getStatistics();
stats.memoryUsage += nodeStats.memoryUsage;
stats.entriesCount += nodeStats.entriesCount;
totalHits += nodeStats.hits;
totalRequests += nodeStats.requests;
}

stats.hitRate = totalRequests > 0 ? totalHits / totalRequests : 0;
stats.missRate = 1 - stats.hitRate;

return stats;
}
}

// Smart caching implementation
class SmartCache {
constructor(private config: CacheConfig) {}

async get(key: string): Promise<any> {
// Implement smart caching logic
const result = await this.storage.get(key);

if (result && this.isValid(result)) {
this.updateAccessPattern(key);
return result;
}

return null;
}

async set(key: string, value: any): Promise<void> {
// Apply cache strategy
await this.applyEvictionPolicy();
await this.storage.set(key, value);
this.updateAccessPattern(key);
}

private isValid(result: CachedItem): boolean {
const now = Date.now();
return (now - result.timestamp) < this.config.ttl;
}

private async applyEvictionPolicy(): Promise<void> {
const currentSize = await this.storage.size();

if (currentSize >= this.config.maxSize) {
switch (this.config.strategy) {
case CacheStrategy.LRU:
await this.evictLRU();
break;
case CacheStrategy.LFU:
await this.evictLFU();
break;
case CacheStrategy.SMART:
await this.smartEviction();
break;
}
}
}
}

3. Resource Optimization

interface ResourceOptimization {
memory: MemoryOptimization;
cpu: CPUOptimization;
io: IOOptimization;
network: NetworkOptimization;
}

interface MemoryOptimization {
streaming: boolean;
chunkSize: number;
bufferSize: number;
garbageCollection: GCConfig;
pooling: ObjectPooling;
}

class ResourceOptimizer {
optimizeMemoryUsage(workflow: Workflow): MemoryOptimizedWorkflow {
const analysis = this.analyzeMemoryUsage(workflow);

return {
...workflow,
nodes: workflow.nodes.map(node => this.optimizeNodeMemory(node, analysis)),
config: {
...workflow.config,
memory: this.generateMemoryConfig(analysis)
}
};
}

private optimizeNodeMemory(node: WorkflowNode, analysis: MemoryAnalysis): WorkflowNode {
const nodeAnalysis = analysis.nodeAnalysis.get(node.id);
if (!nodeAnalysis) return node;

const optimizations: any = {};

// Enable streaming for large data processing
if (nodeAnalysis.dataSize > 100 * 1024 * 1024) { // 100MB
optimizations.streaming = {
enabled: true,
chunkSize: 10 * 1024 * 1024, // 10MB chunks
parallel: true
};
}

// Optimize buffer sizes
if (nodeAnalysis.ioIntensive) {
optimizations.buffers = {
inputBuffer: Math.min(nodeAnalysis.dataSize / 10, 50 * 1024 * 1024),
outputBuffer: Math.min(nodeAnalysis.outputSize / 10, 50 * 1024 * 1024)
};
}

// Configure object pooling for frequently created objects
if (nodeAnalysis.objectCreationRate > 1000) { // objects per second
optimizations.pooling = {
enabled: true,
maxPoolSize: 100,
preAllocate: 10
};
}

return {
...node,
optimizations
};
}

optimizeCPUUsage(workflow: Workflow): CPUOptimizedWorkflow {
const cpuIntensiveNodes = this.identifyCPUIntensiveNodes(workflow);

return {
...workflow,
nodes: workflow.nodes.map(node => {
if (cpuIntensiveNodes.includes(node.id)) {
return this.applyCPUOptimizations(node);
}
return node;
})
};
}

private applyCPUOptimizations(node: WorkflowNode): WorkflowNode {
return {
...node,
optimizations: {
...node.optimizations,
cpu: {
workerThreads: true,
maxWorkers: Math.min(require('os').cpus().length, 4),
loadBalancing: 'round_robin',
affinity: 'auto'
}
}
};
}
}

Scaling Strategies

Horizontal Scaling

interface ScalingConfig {
autoScaling: AutoScalingConfig;
loadBalancing: LoadBalancingConfig;
clustering: ClusteringConfig;
distribution: DistributionStrategy;
}

interface AutoScalingConfig {
enabled: boolean;
minInstances: number;
maxInstances: number;
scaleUpThreshold: number;
scaleDownThreshold: number;
cooldownPeriod: number;
metrics: ScalingMetric[];
}

class WorkflowScaler {
async scaleWorkflow(
workflow: Workflow,
currentLoad: LoadMetrics,
config: ScalingConfig
): Promise<ScalingDecision> {

const decision = await this.analyzeScalingNeed(currentLoad, config);

if (decision.action !== 'none') {
return await this.executeScaling(workflow, decision, config);
}

return decision;
}

private async analyzeScalingNeed(
load: LoadMetrics,
config: ScalingConfig
): Promise<ScalingDecision> {

const autoScaling = config.autoScaling;
if (!autoScaling.enabled) {
return { action: 'none', reason: 'Auto-scaling disabled' };
}

// Check scale-up conditions
const shouldScaleUp = autoScaling.metrics.some(metric => {
const currentValue = this.getMetricValue(load, metric);
return currentValue > autoScaling.scaleUpThreshold;
});

if (shouldScaleUp && load.instanceCount < autoScaling.maxInstances) {
return {
action: 'scale_up',
targetInstances: Math.min(
load.instanceCount + 1,
autoScaling.maxInstances
),
reason: 'Load threshold exceeded'
};
}

// Check scale-down conditions
const shouldScaleDown = autoScaling.metrics.every(metric => {
const currentValue = this.getMetricValue(load, metric);
return currentValue < autoScaling.scaleDownThreshold;
});

if (shouldScaleDown && load.instanceCount > autoScaling.minInstances) {
return {
action: 'scale_down',
targetInstances: Math.max(
load.instanceCount - 1,
autoScaling.minInstances
),
reason: 'Load below threshold'
};
}

return { action: 'none', reason: 'Load within acceptable range' };
}
}

Performance Best Practices

1. Node-Level Optimizations

// Efficient data processing
class PerformantDataProcessor {
async processLargeDataset(data: any[], batchSize: number = 1000): Promise<any[]> {
const results: any[] = [];

// Process in batches to manage memory
for (let i = 0; i < data.length; i += batchSize) {
const batch = data.slice(i, i + batchSize);
const batchResults = await this.processBatch(batch);
results.push(...batchResults);

// Allow garbage collection between batches
if (i % (batchSize * 10) === 0) {
await this.yield();
}
}

return results;
}

private async processBatch(batch: any[]): Promise<any[]> {
// Use Promise.all for parallel processing within batch
return Promise.all(batch.map(item => this.processItem(item)));
}

private async yield(): Promise<void> {
return new Promise(resolve => setImmediate(resolve));
}
}

// Memory-efficient streaming
class StreamingProcessor {
async processStream(
inputStream: ReadableStream,
outputStream: WritableStream,
transformer: (chunk: any) => any
): Promise<void> {

const readable = new ReadableStream({
start(controller) {
inputStream.on('data', (chunk) => {
try {
const transformed = transformer(chunk);
controller.enqueue(transformed);
} catch (error) {
controller.error(error);
}
});

inputStream.on('end', () => {
controller.close();
});

inputStream.on('error', (error) => {
controller.error(error);
});
}
});

return readable.pipeTo(outputStream);
}
}

2. Workflow-Level Optimizations

// Workflow optimization patterns
const performancePatterns = {
// Pattern 1: Early termination
earlyTermination: {
description: 'Stop processing when conditions are met',
implementation: (workflow: Workflow) => {
return workflow.addNode({
type: 'condition',
id: 'early_termination_check',
config: {
condition: 'data.length === 0',
trueAction: 'terminate',
falseAction: 'continue'
}
});
}
},

// Pattern 2: Data prefetching
dataPrefetching: {
description: 'Fetch data before it\'s needed',
implementation: (workflow: Workflow) => {
return workflow.optimizeConnections({
prefetch: true,
lookahead: 2 // Prefetch data for next 2 nodes
});
}
},

// Pattern 3: Lazy evaluation
lazyEvaluation: {
description: 'Evaluate expressions only when needed',
implementation: (workflow: Workflow) => {
return workflow.nodes.map(node => ({
...node,
evaluation: 'lazy',
caching: true
}));
}
}
};

Performance Testing

Load Testing

interface LoadTestConfig {
concurrent: number;
duration: number;
rampUp: number;
scenarios: LoadScenario[];
metrics: string[];
}

class WorkflowLoadTester {
async runLoadTest(workflow: Workflow, config: LoadTestConfig): Promise<LoadTestResult> {
const testRunner = new LoadTestRunner(config);

// Prepare test scenarios
const scenarios = config.scenarios.map(scenario =>
this.prepareScenario(workflow, scenario)
);

// Execute load test
const results = await testRunner.execute(scenarios);

// Analyze results
return this.analyzeResults(results);
}

private analyzeResults(results: RawLoadTestResult[]): LoadTestResult {
return {
summary: this.generateSummary(results),
performance: this.analyzePerformance(results),
bottlenecks: this.identifyBottlenecks(results),
recommendations: this.generateRecommendations(results),
scalabilityAnalysis: this.analyzeScalability(results)
};
}
}

Monitoring and Alerting

Performance Alerts

interface PerformanceAlert {
id: string;
name: string;
condition: AlertCondition;
severity: AlertSeverity;
actions: AlertAction[];
}

const performanceAlerts: PerformanceAlert[] = [
{
id: 'slow_execution',
name: 'Slow Workflow Execution',
condition: {
metric: 'execution_time',
operator: '>',
threshold: 300000, // 5 minutes
duration: '2m'
},
severity: 'warning',
actions: ['notify_team', 'auto_scale']
},

{
id: 'high_memory_usage',
name: 'High Memory Usage',
condition: {
metric: 'memory_usage_percent',
operator: '>',
threshold: 85,
duration: '5m'
},
severity: 'critical',
actions: ['immediate_notify', 'scale_up', 'enable_gc']
},

{
id: 'low_throughput',
name: 'Low Throughput',
condition: {
metric: 'throughput_rps',
operator: '<',
threshold: 10,
duration: '10m'
},
severity: 'warning',
actions: ['investigate', 'check_bottlenecks']
}
];

Troubleshooting Performance Issues

Common Performance Problems

  1. Memory Leaks

    • Monitor heap usage trends
    • Use memory profiling tools
    • Implement proper cleanup
  2. CPU Bottlenecks

    • Profile CPU usage per node
    • Optimize algorithms
    • Consider parallelization
  3. I/O Bottlenecks

    • Monitor disk and network I/O
    • Implement connection pooling
    • Use asynchronous operations
  4. Inefficient Data Structures

    • Choose appropriate data structures
    • Minimize data copying
    • Use streaming for large datasets

Performance Debugging Tools

class PerformanceDebugger {
async profileWorkflow(executionId: string): Promise<PerformanceProfile> {
const profile = {
cpuProfile: await this.profileCPU(executionId),
memoryProfile: await this.profileMemory(executionId),
ioProfile: await this.profileIO(executionId),
recommendations: []
};

profile.recommendations = this.generateRecommendations(profile);

return profile;
}

async generateRecommendations(profile: PerformanceProfile): Promise<Recommendation[]> {
const recommendations: Recommendation[] = [];

// CPU recommendations
if (profile.cpuProfile.averageUsage > 80) {
recommendations.push({
type: 'cpu',
severity: 'high',
description: 'High CPU usage detected',
suggestion: 'Consider optimizing algorithms or adding parallelization',
priority: 1
});
}

// Memory recommendations
if (profile.memoryProfile.trend === 'increasing') {
recommendations.push({
type: 'memory',
severity: 'medium',
description: 'Memory usage is trending upward',
suggestion: 'Check for memory leaks or optimize data structures',
priority: 2
});
}

return recommendations;
}
}