๐ง Agentic AI Blueprint
ยท 2 min read
1. Cognitive Core (Reasoning & Intelligence)โ
- LLM Connectors โ access to foundational models (GPT, Claude, LLaMA, Mistral)
- Planning Engines โ task decomposition, tree search, Monte Carlo planning
- Reasoning Frameworks โ ReAct, chain-of-thought, graph-of-thought, self-reflection
- Meta-Cognition โ agents evaluating their own confidence/uncertainty
2. Memory & Knowledge Substrateโ
- Short-Term Memory โ current context window
- Long-Term Memory โ vector DBs, knowledge graphs
- Episodic Memory โ logs of interactions, task histories
- Semantic Memory โ factual knowledge bases
- Procedural Memory โ how-tos, learned workflows
- Associative Memory โ linking related knowledge dynamically
3. Data & Perceptionโ
- Data Sources โ internal documents, APIs, web, real-time feeds
- Multimodal Perception โ text, images, video, audio, sensor data
- Data Fusion Layer โ integrates multimodal inputs into coherent context
- Knowledge Grounding โ verifying facts against trusted sources
4. Agency & Actionโ
- Agentic Connectors โ APIs, tools, robotic systems
- Execution Sandbox โ safe environment for running code or simulations
- Multi-Agent Protocols (MCPs) โ collaboration, delegation, negotiation
- Embodiment Layer โ integration with hardware (IoT, robotics, AR/VR avatars)
5. Prompting & Expressionโ
- Prompt Templates & Libraries โ reusable scaffolds
- Dynamic Prompt Assembly โ injects context, goals, retrieved knowledge
- Prompt Optimization Systems โ few-shot, self-critique, retrieval-augmented prompting
- Persona & Role Systems โ define the "character" or style of the agent
- Multi-Lingual/Narrative Engines โ adapt tone, language, storytelling
6. Evaluation & Governanceโ
- Eval Systems โ correctness, coherence, bias, safety
- Guardrails โ content filters, alignment layers, access control
- Observability & Logging โ traceability for debugging and audits
- Ethics & Compliance โ regulatory alignment, explainability modules
- Trust & Verification โ cryptographic signatures, provenance tracking
7. Adaptation & Learningโ
- Feedback Loops โ user ratings, implicit signals, reinforcement learning
- Experimentation Layer โ A/B testing, model selection, prompt trials
- Self-Improvement โ agents refine their own strategies
- Meta-Learning Systems โ generalize lessons across tasks
8. Interaction & Experienceโ
- User Interface Layer โ chat, dashboards, voice assistants, immersive XR
- Contextual Personalization โ user profiles, preferences, history
- Collaboration Interfaces โ multi-user shared agents, team AI assistants
- Emotion & Empathy Modules โ affective computing for human-like interaction
9. Infrastructure & Scaleโ
- Compute Orchestration โ model routing, hybrid cloud, GPU scheduling
- Cost Optimization Systems โ model caching, distillation, adaptive compression
- Resilience & Failover โ redundancy, fallback models, recovery systems
- Security Layer โ data privacy, adversarial defense, red-teaming
10. Futuristic / Experimental Componentsโ
- Causal Reasoning Engines โ moving beyond correlation to cause-effect reasoning
- Simulation Environments โ agents run "mental models" before acting
- Swarm Intelligence โ emergent behavior from many small agents
- Consciousness Probes (research only) โ monitoring self-awareness signals
- Ethical Governors โ adaptive moral reasoning depending on context